This appendix presents information pertinent to the standard deviation in blackjack. It assumes the player is following basic strategy in a cut card game. Each table is the product of a separate simulation of about ten billion hands played.
As a reminder, if the variance of one hand is v, the covariance is c, and the number of hands played at once is n, then the total variance is n×v + n×(n-1)×c.
The following table is the product of many simulations and a lot of programming work. It shows the variance and covariance for various sets of rules.
Decks | Soft 17 | Double After Split |
Surrender Allowed |
Re-split Aces Allowed |
Expected Value |
Variance | Covariance |
---|---|---|---|---|---|---|---|
6 | Stand | Yes | Yes | Yes | -0.00281 | 1.303 | 0.479 |
6 | Stand | No | No | No | -0.00573 | 1.295 | 0.478 |
6 | Hit | Yes | Yes | Yes | -0.00473 | 1.312 | 0.487 |
6 | Hit | No | No | No | -0.00787 | 1.308 | 0.488 |
6 | Hit | Yes | No | No | -0.00628 | 1.346 | 0.499 |
6 | Hit | No | Yes | No | -0.00699 | 1.272 | 0.475 |
6 | Hit | No | No | Yes | -0.00717 | 1.311 | 0.488 |
8 | Hit | No | No | No | -0.00812 | 1.309 | 0.489 |
2 | Hit | Yes | No | No | -0.00398 | 1.341 | 0.495 |
By way of comparison, Stanford Wong, in his book Professional Blackjack (page 203) says the variance is 1.28 and the covariance 0.47 for his Benchmark Rules, which are six decks, dealer stands on soft 17, no double after split, no re-splitting aces, no surrender. The second row of my table shows that for the same rules I get 1.295 and 0.478 respectively, which is close enough for me.
The next table shows the effect on the expected value, variance and covariance of various rule changes compared to the Wong Benchmark Rules.
Rule | Expected Value |
Variance | Covariance |
---|---|---|---|
Stand on soft 17 | 0.00191 | -0.00838 | -0.00764 |
Double after split allowed | 0.00159 | 0.03753 | 0.01091 |
Surrender allowed | 0.00088 | -0.03629 | -0.01247 |
Re-split aces allowed | 0.00070 | 0.00207 | 0.00037 |
Eight decks | -0.00025 | 0.00071 | 0.00063 |
Two decks | 0.00230 | -0.00530 | -0.00422 |
What follows are tables showing the probability of the net win for one to three hands under the Liberal Strip Rules, defined above.
The first table shows the probability of each net outcome playing a single hand under what I call "liberal strip rules," which are as follows:
Net win | Probability | Return |
---|---|---|
-8 | 0.00000019 | -0.00000154 |
-7 | 0.00000235 | -0.00001643 |
-6 | 0.00001785 | -0.00010709 |
-5 | 0.00008947 | -0.00044736 |
-4 | 0.00048248 | -0.00192993 |
-3 | 0.00207909 | -0.00623728 |
-2 | 0.04180923 | -0.08361847 |
-1 | 0.40171191 | -0.40171191 |
-0.5 | 0.04470705 | -0.02235353 |
0 | 0.08483290 | 0.00000000 |
1 | 0.31697909 | 0.31697909 |
1.5 | 0.04529632 | 0.06794448 |
2 | 0.05844299 | 0.11688598 |
3 | 0.00259645 | 0.00778935 |
4 | 0.00076323 | 0.00305292 |
5 | 0.00014491 | 0.00072453 |
6 | 0.00003774 | 0.00022646 |
7 | 0.00000609 | 0.00004263 |
8 | 0.00000066 | 0.00000526 |
Total | 1.00000000 | -0.00277282 |
The table above reflects the following:
I'm frequently asked about the probability of a net win in blackjack. The following table answers that question.
Event | Probability |
---|---|
Win | 42.43% |
Push | 8.48% |
Loss | 49.09% |
The next three tables break down the possible events by whether the first action was to hit, stand, or surrender; double; or split.
Event | Total | Probability | Return |
---|---|---|---|
1.5 | 77147473 | 0.05144768 | 0.07717152 |
1 | 537410636 | 0.35838544 | 0.35838544 |
0 | 127597398 | 0.08509145 | 0 |
-0.5 | 76163623 | 0.05079158 | -0.02539579 |
-1 | 681213441 | 0.45428386 | -0.45428386 |
Total | 1499532571 | 1 | -0.04412269 |
Event | Total | Probability | Return |
---|---|---|---|
2 | 89463603 | 0.54980265 | 1.09960529 |
0 | 11301274 | 0.06945249 | 0 |
-2 | 61954607 | 0.38074486 | -0.76148972 |
Total | 162719484 | 1 | 0.33811558 |
Event | Total | Probability | Return |
---|---|---|---|
8 | 1079 | 0.00002554 | 0.00020428 |
7 | 10440 | 0.00024707 | 0.00172948 |
6 | 64099 | 0.00151694 | 0.00910166 |
5 | 247638 | 0.00586051 | 0.02930255 |
4 | 1307719 | 0.030948 | 0.123792 |
3 | 4437365 | 0.10501306 | 0.31503917 |
2 | 10222578 | 0.24192379 | 0.48384758 |
1 | 2822458 | 0.06679526 | 0.06679526 |
0 | 5621675 | 0.1330405 | 0 |
-1 | 3520209 | 0.08330798 | -0.08330798 |
-2 | 9425393 | 0.2230579 | -0.4461158 |
-3 | 3559202 | 0.08423077 | -0.25269231 |
-4 | 828010 | 0.01959538 | -0.07838153 |
-5 | 152687 | 0.00361343 | -0.01806717 |
-6 | 30536 | 0.00072265 | -0.00433592 |
-7 | 3972 | 0.000094 | -0.000658 |
-8 | 305 | 0.00000722 | -0.00005774 |
Total | 42255365 | 1 | 0.14619552 |
The following table shows the net result playing two hands at a time under the Liberal Strip Rules, explained above. The Return column shows the net win between the two hands.
Net win | Probability | Return |
---|---|---|
-14 | 0.00000000 | 0.00000000 |
-13 | 0.00000000 | -0.00000001 |
-12 | 0.00000001 | -0.00000006 |
-11 | 0.00000003 | -0.00000035 |
-10 | 0.00000023 | -0.00000228 |
-9 | 0.00000163 | -0.00001464 |
-8 | 0.00001040 | -0.00008324 |
-7.5 | 0.00000000 | -0.00000003 |
-7 | 0.00005327 | -0.00037288 |
-6.5 | 0.00000009 | -0.00000061 |
-6 | 0.00024527 | -0.00147159 |
-5.5 | 0.00000114 | -0.00000629 |
-5 | 0.00106847 | -0.00534234 |
-4.5 | 0.00000967 | -0.00004352 |
-4 | 0.00654661 | -0.02618644 |
-3.5 | 0.00005733 | -0.00020065 |
-3 | 0.04607814 | -0.13823442 |
-2.5 | 0.00214887 | -0.00537218 |
-2 | 0.23285866 | -0.46571732 |
-1.5 | 0.03547663 | -0.05321495 |
-1 | 0.09903321 | -0.09903321 |
-0.5 | 0.01386072 | -0.00693036 |
0 | 0.14677504 | 0.00000000 |
0.5 | 0.05888290 | 0.02944145 |
1 | 0.06026238 | 0.06026238 |
1.5 | 0.01030563 | 0.01545845 |
2 | 0.17250085 | 0.34500170 |
2.5 | 0.03020186 | 0.07550465 |
3 | 0.06443204 | 0.19329612 |
3.5 | 0.00559850 | 0.01959474 |
4 | 0.01072401 | 0.04289604 |
4.5 | 0.00024927 | 0.00112171 |
5 | 0.00187139 | 0.00935695 |
5.5 | 0.00007341 | 0.00040373 |
6 | 0.00049405 | 0.00296428 |
6.5 | 0.00001414 | 0.00009193 |
7 | 0.00012404 | 0.00086825 |
7.5 | 0.00000369 | 0.00002767 |
8 | 0.00002933 | 0.00023466 |
8.5 | 0.00000060 | 0.00000508 |
9 | 0.00000543 | 0.00004888 |
9.5 | 0.00000007 | 0.00000063 |
10 | 0.00000083 | 0.00000834 |
11 | 0.00000013 | 0.00000141 |
12 | 0.00000002 | 0.00000028 |
13 | 0.00000000 | 0.00000005 |
14 | 0.00000000 | 0.00000001 |
Total | 1.00000000 | -0.00563798 |
The table above reflects the following:
The following table shows the net result playing three hands at a time under the Liberal Strip Rules, explained above. The Return column shows the net win between the three hands.
Net win | Probability | Return |
---|---|---|
-16 | 0.00000000 | -0.00000001 |
-15 | 0.00000000 | -0.00000001 |
-14 | 0.00000001 | -0.00000007 |
-13 | 0.00000003 | -0.00000041 |
-12 | 0.00000018 | -0.00000218 |
-11 | 0.00000100 | -0.00001099 |
-10.5 | 0.00000000 | 0.00000000 |
-10 | 0.00000531 | -0.00005309 |
-9.5 | 0.00000001 | -0.00000006 |
-9 | 0.00002581 | -0.00023228 |
-8.5 | 0.00000005 | -0.00000047 |
-8 | 0.00011292 | -0.00090339 |
-7.5 | 0.00000049 | -0.00000370 |
-7 | 0.00046097 | -0.00322680 |
-6.5 | 0.00000397 | -0.00002581 |
-6 | 0.00197390 | -0.01184341 |
-5.5 | 0.00002622 | -0.00014419 |
-5 | 0.00969361 | -0.04846807 |
-4.5 | 0.00022638 | -0.00101870 |
-4 | 0.04183392 | -0.16733566 |
-3.5 | 0.00319799 | -0.01119297 |
-3 | 0.15826947 | -0.47480842 |
-2.5 | 0.02641456 | -0.06603640 |
-2 | 0.08893658 | -0.17787317 |
-1.5 | 0.02183548 | -0.03275322 |
-1 | 0.09681697 | -0.09681697 |
-0.5 | 0.04992545 | -0.02496273 |
0 | 0.06712076 | 0.00000000 |
0.5 | 0.02111145 | 0.01055572 |
1 | 0.08978272 | 0.08978272 |
1.5 | 0.03789943 | 0.05684914 |
2 | 0.04349592 | 0.08699183 |
2.5 | 0.01123447 | 0.02808618 |
3 | 0.10813504 | 0.32440511 |
3.5 | 0.02489093 | 0.08711825 |
4 | 0.06196736 | 0.24786943 |
4.5 | 0.00906613 | 0.04079759 |
5 | 0.01805409 | 0.09027044 |
5.5 | 0.00154269 | 0.00848480 |
6 | 0.00409323 | 0.02455940 |
6.5 | 0.00027059 | 0.00175885 |
7 | 0.00107315 | 0.00751203 |
7.5 | 0.00007208 | 0.00054062 |
8 | 0.00030105 | 0.00240840 |
8.5 | 0.00001824 | 0.00015505 |
9 | 0.00008014 | 0.00072126 |
9.5 | 0.00000431 | 0.00004096 |
10 | 0.00001901 | 0.00019010 |
10.5 | 0.00000081 | 0.00000846 |
11 | 0.00000398 | 0.00004379 |
11.5 | 0.00000013 | 0.00000144 |
12 | 0.00000078 | 0.00000939 |
12.5 | 0.00000002 | 0.00000023 |
13 | 0.00000016 | 0.00000214 |
13.5 | 0.00000001 | 0.00000008 |
14 | 0.00000003 | 0.00000045 |
14.5 | 0.00000000 | 0.00000001 |
15 | 0.00000001 | 0.00000009 |
15.5 | 0.00000000 | 0.00000000 |
16 | 0.00000000 | 0.00000002 |
17 | 0.00000000 | 0.00000001 |
Total | 1.00000000 | -0.00854917 |
The table above reflects the following:
Written by: